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NON-EQUILIBRIUM HOT-CARRIER DIFFUSION PHENOMENON IN SEMICONDUCTORS

1.* A THEORETICAL NON-MARKOVIAN APPROACH+

J. Zi*Mermaun , P. Lugli and D.K. Ferry

Colorado State University, Fort CoZlina, CO 805823, U.S.A.
*Perflwlent a~ddressa C.H.S. and Greco Microondes. univer'eit4 de Lilleo 1, France

Uui- Le problime de la diffusion do portenra chauds daone lees emicon-
ducteurs eat 6tudi6 I l'aide d'une Equation de Langevin Retardde (RLE)
appliquge au cas de Ia rdponse tranoitoire dynamique (TDR) b uncha flectrique
stationire homgbne. tine fonction de corrilation des fluctuations de vitesse
non-stationnaire eat difinie et eat reline b un codfficient de diffusion
ddpendant du temps. Ceci est appliqui au Silicium type-N et lea auantitds
Intdressantos sont Studides em fonction 4e 1'espace et/ou du temps. Le
probiee de diffusion non-stationnaire eat particulibrement Important dane
lea composants b canaux ultra-courts ob rdponse transitoire dynamique et our-
vitesse s manifestant.

Abstract - The problem of hot carrier diffusion in semiconductors is studied
with a non-Narkovian Retarded Langevin Equation (ill) applied to the case of
carriers in the transient dynamic response (TDR) to a steady homogeneous elec-
tric field. A non-stationary velocity fluctuation/correlation function is
defined and related to a tims dependent diffusion coefficient.* This in applied
to n-type silicon and the parsmeters of Interest are studied as a function of
space and/or tims. The problem of non-stationary diffusion is particularly
important in very short channel devices in which TDR and velocity overrhoot

t occur.

1. Introduction.- In recent years, such Interest has centered uion the transient
dynamic response of electrons as it Impacts carrier transport throuph small spatial

regions of high electric field. With recent improvements in technological fahrica-

tion of very-short-channel devices, this problem has become not only of theoretical -
interest but of practical Interest as well. For instance, in the pinch-off region

of a short-gate field-effect transistor, the carriers :Injected at the source move
by a combination of drift and diffusion In a very high electric field. Than the

transit time of the carriers under the gate can be shorter than, or of the same

order of magnitude as, the time needed to establish a steady-state high-field die-
tribution function. In fact, a condition for thin to occur is that the transit-

* time In the high-field region be comparable to the monetem relazation time thus
eausing the velocity to Increase, but much shorter than the energy relaxation time.

Thus. on average the Carriers may transit through a considerable portin of the

high-field region with almost their low field mobility even thouph the applied
* field corresponds to the saturated velocity range (l). This in true not only for

tefirst-order moment of the distribution functian of the carriers (drift veloeity). ~ i

but also Is true for higher order moumts, and especially for diffusion (related to
the second momint). The diffusion coefficient in one of the moet Important

+This work supported in part by the B.8. Office of Naval Research.
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* parameters required in modeling semiconductor devices, It ts not only neceaaary for

evaluatinv, operating characteristics and frequency characteristics but it provides

also fundamental characterization of velocity fluctuations In the system and their

* contribution to noise in the device [2]. Diffusion actually is a process depending

upon velocity correlation and the relationship between diffusion and drift, as

expressed by the Einstein relation, is a steady-state relation [3]. indeed, tract-

* able results for the steady-state hot electron problem have only recently been

achieved [4-6). The problem In the transient region is complictted by the fact that

* the random-walk equations governing transient diffusion do not reduce to normal

Fick's law behavior on time scales comparable to the relaxation process, a result of

* the general non-Markovian and non-stationary nature of transport on theme time

scales. In this paper, we address some of these problems with the help of a Rketard-

* ad Langevin Equation MEL) in order to approach the random walk of the carriers.

*Furthermore, we define a nonm-stationary two-time correlation function for the ve-

locity fluctuations which can be related to a transient diffusion coefficient. The

formal solution of the RLE allows us to derive a general expression for the correla-

tion function. Then, we deal with the diffusion coefficient Itself and show in

particular that the transient diffusion coefficient is related to the time derive-

tive of the mean-square displacement of the ceirriera, However, it is found that In

the limit of long times, stationarity and the normal equations for correlation and

diffusion are recovered.
2. The letarded Lantevin Eauation Approach - We consider an ensemble of carriers
initially at equilibrium with the crystal lattice. The ensemble is represented by

a Maxwell-Uolttmen distribution in v-space (,cv> - 0 and "v2, _ 3k,L/ with TIL the

* lattice temerature). At a certain time, referred as t - o, we apply a mecroscopi-

* cally homogeneous and steady electric field whose amlitude corresponds to hot car-

* riers. These conditions give wise toa TOR regime in which the system relaxe toward

a non-equilibrium, steady-state and often exhibits a velocity overshoot.
The mot ion of the particles is governed by a Retarded Lasgevin Squation for the

velocitY of the carriers, and Is written as 17.SJ
* t

a - m (t-m) w(uOdu +1(t) + qi h(t) ()
dt J

where 1(t) io a random force sysblia" the Iudo (son-resular) part of the col-

lisioss of the carriers with the lattice (mo carrier-carrier Interaction io consid-
* red here), 1~ 0Is the extesuel field, and b(t) is the Uemyide finetIon. $(t) is
the mmoy function of the sy'sti adC Is related to the correlation function of the

total force applied to the System. For Instance in the ease of a statinary regime, 4L *

we would have f(t) va AR(e)I(t)u*m2. 2 (o), in abeme., of exteras foresn t3j.
Squation (1) t a mnuaAwbseim fern of the I.opeft quaIsm, #Ite the tato

2'.. ~s ofeu"g of the wm2.eIny at t lot OM2Y fatm the Velocity at tOut time but

als ASPe"@* e aln post time. 7futher, it is a oft-statiomary, e"UiM, sito. the

A9
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lower bound in the integral refers to that time where the disturbing fiteld was

applied. It is generally admitted by ow that only an equation such as (1) can de-

scribe very-fast processes 13.7,81, and In particular the TDl regime can be de-

scribed in this way. In (1). we have asumed a parabolic energy band (9).

'Re Wa easily solve (1) using Laplace transforms. He Introduce a function

1(t) defined by Its Laplace transform, as

I~)-(s + i'(s))- (2)

Then, caning back to time domain, we find
t t

v~t.zI 1(1(r 1adw + f R(t-u) X(u)du ,(3)

00
which is a general expression of the evolution of the velocity of each carrier under

the influence of the external field and of the collisions. Ne Pet X(t) by aver-

aging (3) over the ensemble (we assm 4R(t)> 0). The result is

X~)- dvd
M)q

1
o dt '(4

where vd(t) is the ensemble drift velocity of the carriers. Therefore X(t) rapre-

sents In fact the macroscopic acceleration of the ensmla. Novever 1(t) can be

given another definition. We define a non-stationary corrlatioa funaction for the

velocity fluctuations as

Mlultiplying both sides of (1) by v(o), averaging over the ensemble (mate that

<R(t)v(o)> - 0), Laplace transforming and making use of (2) we obtain after re-r

transforming

*vO v2 (o), X(t) .(6

X(t) is the reduced son-stationary correlation function calculated at t' *o. Comn-

paring this equality with (4) gives
t

This relationship existing between the f irst and a second maset of the velocities

of the carriers Is a direct Intrinsic preperty of the -WK use" to describe the TM

regims. Whther this equlity Is met Is so of the Voals of the n vot paer 61, ~
bet (7) Is a statement of the famllnr Xio fonals, [U) feo in equatbrim

statistical uschamiep.
To develop a comlets empreseies fer the eGorelatiem funtiorn definedin()

we snd to know the corelation funceion ad the Isd. fen R(t) Vwhi appears when

wpot (3) into (5). If we samm thee the sellielw seAur tonsafteamolh in time

we can write

. .A~ . .
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<R~t)R(t')> =21 R(t,t')8ddt-t'I)()

Relaxation of this condition does niot significantly affect the results found to the

present work. A consequence of (8) is that only W5 1 t) - 1(t~t=t) Is of interest

In the current contest and this latter function can be obtained from tie time evolu-

tion of the mean energy of the ensemble. Then the correlation function # wcan be

put In the form (with 0 2.0) to

2 2w 4 1d(o + 0) - <T (o)>X(td2 X~t~ + 6) + ~ ~tyXyXy4*d 9
0V 0

and In particular we obtain for the means-energy:
t

I'~ 2t) +.I <v2Cc)> X2(t) + . (ty 2(y,'C(t)> -1 2 1d 22 t)1(~ . (0

We can sum up this part by saying that if, In the current conditions of the TDE

regime, the evolutions of the drift velocity and the mans-energy are known, then the

* fluctuations of the syetmn are completely specified through (9) and (10) together

With (4).
3. The Diffusion Coefficient.- Using expression (5) for the non-stationery correla-

tion function of velocity fluctuations, we can define a non-stationary or tine-de-

pendent diffusion coefficient, which Is a #smoralization of the definition given In

a stationary regim (3.61:

0

Another way to defin, the diffusion Is through the spreading of a packet of

carriers drifting under the Influence of the external force and spreading due to the

fluctuations of the velocities of the carriera. This spreading is characterized by
the mean-square displacement of the carriers starting from a known Initial distribu- 0
tion (a ruirac-function in space, for Instance). It is may to see that

<AX 2(W> - c((t)--Cx(t)>) 2> - JJ* ,tt)dt'dt" .(12)

From the definition (12), It is straightforward to show that. j.-
t~ ~ t*7A<X t)>Ct',t)dt' - DXt) .(13)

This shows that the diffusion coefficient defined In (11) is related to the time-
derivative of the aveane-squaret displacement. The usual deffnition of the diffa-

aiam In a steady-state is In fact a limiting 4ase of relation (13). has the time A

t, at imeh the integration of 4 4t',t) begins is greater tba the tim t5 seeded

for the system to reach Statimmarity, *,become en even funtion of t-t' only.

-A -m (()tp %l(t) (i
dt*

0~.--. - . - . . . . .
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- ~An t 4, ft, D t) tends to a constant finite Hlt D and

hItsm: 2(t) - 2t (15
t 4

Therefore (11) defines a gteneral diffusion coefficient which is valid In both eta-
tionary and non-stationary regime, and as we did above for # wva can derive an

expression for <At)>:

<AX2(P.--<22(t) + 2v l(t-u) vd2 (u)du *(6

q2 a 2 ()> vd~ t -iR 2j
The expression of D(t) follows Immdiately using (13).
4. Application and Dliscussion.- In tha case of n-type 3'1<1, the carriers behave
as If the energy band was unique with an Isotropic effective mss.a There, the
concepts described above are easily applied.

i) The oscillatory nature of the velocity overshot strongly suggests that
the mmry function Y(t) (and t(t). as well) Is an exponential. So we specify Y(t)

via the ansatz 1.12]

Y(t) No[ + a(l - et]~) ,(7

1/r is the tim needed for the system to reach stationarity and as such io equiva-
lent to the energy relaxation tim.

ii) To have -n Insight Into the tim dependence of Lul(t). we can make use ofA
(10) and the results given by a lftt Caveo ustbod 1101 for ct(t),> . it to thus
possible to show that

nt) +-o) .r _-r (18)

is a good approximation for the correlation function of the random force R(t). I
Is given by the static diffusion coefficient .-

2( .. U -2\--

and Ian << IR,. The value of 1.does not effect alaifiantly the resualts mimce at
short timss the second term In the US8 of (16) is an order of meauaude MiLer than
the first tami.

Taking: (17) and (18) into accout, AV,(t' t) an fl(t) are easily derived amy-
tiLc a nd computd Wepresent heresoin compted results obtained with Z - 50

kV/= Th no-sttioerycorelaton uncionIs impay"in Fig. 1. and its
evolution is studied for different Initial time to funm 0 to 0.5 pa (the leter
corresponds to the steady-state). The fact that the correlation function ts steeper
When to i.1 longer can be 4Xled by the tuftes" of t0A scatterng frequsmy an a
function Of tim corresponding to the hating of tde arrier. in other w.ord, at
Short time the Correlation functian is dONWted by the initial distributIa Of the

velocitia. Of the CarrT.ers, While at lagger tims, wAm the steady-scare is

'Is
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approached, the system law been completely randomised by the collisions and the

correlation function in dominated by the random force (i.e. ILt)

The mae-square displacement and diffusion coefficient are displayed in Fig. 2

as a function of the distancea travelled by the carriers. This shows the spatial

extension over which the system Is In a non-stationary regime, - 40fl ; i. the

present case. These results are compared to what would occur In case of a pure

ballistic regime. In fact, the calculated D(z) departs from the ballistic trend

-.eve at very short times (end distances) meaning that no balliatic regime exiat. for

transient diffusion. On the contrary at longer time D() gos through a maximum

and then decreases to its stationary value. This is, of course, related to the

ocillatory nature of the correlation functions and these oscillations are essen-

tally the consequence of the combination of momentum and energy relaxation in the

resolvent X(s) of the ELI. In the present examle, this resolvent is a rational
fraction which has two complex conjugate poles.

* possible extensions of the work could be: i) the application of the present

technique to ultivalley samiconductors; ii) to take Into account spatial varia-

tions of the electric field and -then get a mre precise picture of what occurs in a

short-channel device;,i).t try a more physical and less phenomenological approach

using quentom statistical mechanics 1131.

In summry, we have obtained here a consistent definition of the diffusion

coefficient In team of the velocity auto-correlation functin. This definition is

valid in the transient anon-stationary regime and reduces to the normal expres- I

sion as steady-state is approached. The application of this to the retarded, non-

stationary Langrvin equation yields expressions for the velocity correlation func-

* tins and diffusion coefficient which hve excallent qualitative agreement and satis-
- I factory quantitative agremnt to results obtained by a Monte Carlo method U01J.
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